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The Fourier modal method (FMM), often also referred to as rigorous coupled-wave analysis (RCWA), is known
to suffer from numerical instabilities when applied to low-loss metallic gratings under TM incidence. This
problem has so far been attributed to the imperfect conditioning of the matrices to be diagonalized. The present
analysis based on a modal vision reveals that the so-called instabilities are true features of the solution of the
mathematical problem of a binary metal grating dealt with by truncated Fourier representation of Maxwell’s
equations. The extreme sensitivity of this solution to the optogeometrical parameters is the result of the exci-
tation, propagation, coupling, interference, and resonance of a finite number of very slow propagating spurious
modes. An astute management of these modes permits a complete and safe removal of the numerical instabili-
ties at the price of an arbitrarily small and controllable reduction in accuracy as compared with the referenced

true-mode method. © 2007 Optical Society of America

OCIS codes: 050.1950, 050.1960.

1. INTRODUCTION

The Fourier modal method (FMM) has been considered as
a simple and efficient tool for one-dimensional (1D) grat-
ings analysis since 1996 when the problem of TM inci-
dence on gratings was given a sound solution [1-3]. Nu-
merical studies have shown that the FMM can deal
efficiently with low-loss metals in the visible wavelength
range [4,5]. However, the method still faces difficulties
when used in silver, gold, or copper gratings further in the
infrared. Popov et al. [6] have shown in a case study that
the numerical results given by the FMM exhibit strong
and unpredictable instabilities. These were attributed to
the imperfect conditioning of the matrices to be diagonal-
ized. This statement was later questioned by Watanabe
[7]. A heuristical solution was proposed to introduce arti-
ficial metal losses in order to damp the instabilities and/or
to apply two-step truncation [6]. Such strategy amounts
to treating a different although neighboring electromag-
netic problem.

The present paper undertakes the analysis of the test
structure considered in [6,7] from a modal standpoint.
The source of instability will be identified as the excita-
tion of high-order spurious modes generated by the trun-
cation of the Fourier series representing the Maxwell
equations. These modes will then be shown to possibly
lead to high-contrast interferences of very high sensitivity
on the optogeometrical parameters of the excited struc-
ture. Finally, an astute mode-filtering operation will
make the transformation of the mathematically exact but
numerically highly sensitive solution of the truncated
Fourier representation of Maxwell’s equations into a
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nearly exact and stable solution. This analysis will not be
made from a mathematical standpoint. We will explore
the very grating structure analyzed in [6,7] and bring as
much as possible a qualitative physical insight to its nu-
merical analysis. The FMM was implemented with its
last known development into an existing set of grating
modeling codes. As in [6], the method that is used as the
reference is the true-mode method (TMM) [8,9] with its
most recent developments [10]. This gives us confidence
that the comparison is made in the best common-mode
conditions.

2. FOURIER MODES

The binary grating is illuminated by a TM polarized plane
wave (the H field is parallel to the grating grooves) under
the incidence angle 6. Figure 1 reproduces the numerical
results obtained in [7] for a highly conductive grating
made of a lossless metal with n,=0+:10. The minus-first-
order diffraction efficiency is computed by the FMM as a
function of the air gap between the metal walls of the
grooves. The values of the parameters are the same as in
[7]. The grating period A and depth are 500 nm, the wave-
length \ is 632.8 nm, and the incidence angle #is 30°. The
curve of Fig. 1 is obtained with a number N=31 of diffrac-
tion orders (truncation number), which defines the N
X N matrix to be diagonalized. The FMM mathematical
treatment is made according to [2]. The efficiency is cal-
culated for 1001 values of the groove width from
10 nm to 490 nm with constant interval. As already
shown in [6], the FMM results appear as a noise on the
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Fig. 1. Groove width dependence of the minus-first-order dif-
fraction efficiency with A=632.8 nm and A=500 nm.

smooth baseline given by the TMM; a zoom on any low-
noise section of the curve reveals that the noise is present
everywhere.

The grating modes of the FMM are obtained as a solu-
tion of an eigenvalue problem by matrix diagonalization.
The total number of considered modes is equal to the
truncation number or to the matrix dimension. The grat-
ing modes of the TMM are the natural lamellar structure
modes satisfying the actual boundary conditions, i.e., the
dispersion equation of the true binary rectangular grating
[10]. In what follows the effective index of a grating mode
is defined as the ratio between the eigenvalue of an FMM
or a TMM solution (i.e., the mode propagation constant
normal to the structure plane) and the vacuum wavenum-
ber kg=27/\. In the present lossless structure the effec-
tive index of a propagating mode has a nonzero real part
and a zero imaginary part, whereas the nonzero part of
an evanescent mode is the imaginary part that is respon-
sible for the mode field damping. The effective index of a
propagating mode of plasmonic nature is real and larger
than 1, whereas that of a propagating dielectric mode is
real and smaller than the refractive index in the grooves
(here less than 1).

Table 1 gives the list of the effective indices of the first
and the last grating modes propagating up and down the
grating grooves as given by the TMM and the FMM for a
groove width of 93.518 nm and truncation number N
=31. The chosen groove width corresponds to the stron-
gest instability shown by the arrow in the graph of Fig. 1.
The TMM modes are listed in decreasing order of the
square of the real part of their effective index. The eva-
nescent modes of midorder number are not relevant in the
present analysis and are therefore left out. For a given
groove width all TMM modes of the TM polarization are
evanescent except the single plasmon mode of zeroth or-
der. More complicated is the ordering of the list of the
FMM modes. Table 1 reveals that all TMM modes up to
order N-3 have an FMM mode counterpart, but at the
end of the FMM modes spectrum there are a restricted
number of modes of completely different character that do
not have their TMM counterpart. This is undoubtedly the
result of the truncation of the infinite matrices to be di-
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Table 1. Complex Effective Index of a Few
First- and Last-Order TMM and FMM Modes with
Truncation Number N=31¢

True Modes Fourier Modes

Mode
order Real Imag. Real Imag.

0 1.10459 0.0 1.10476 0.0

1 0.0 3.16773 0.0 3.23267

2 0.0 6.66824 0.0 6.99719

3 0.0 10.0311 0.0 10.0311
N-6 0.0 18.5053 0.0 20.5776
N-5 0.0 19.1612 0.0 23.9795
N-4 0.0 19.8468 0.0 26.1466
N-3 0.0 20.268 5.3312 0.0
N-2 0.0 20.5031 6.09379 0.0
N-1 0.0 21.1819 12.5095 0.0

“At the end of the FMM modal spectrum, there are three spurious modes having
a character completely different from the corresponding true modes of the same
order.

agonalized. These modes will hereafter be called “spuri-
ous” modes, although they are needed to complete the set
of eigenvectors for expressing a correct solution. It is re-
markable that all these spurious modes have a plasmonic
character since their effective index is real and larger
than 1. This characteristic represents a first criterion for
identifying them in the grating mode spectrum. Such
modes propagate without attenuation in the case of a loss-
less metal.

Having identified the FMM modes without a TMM
counterpart, we have analyzed how this group of modes
evolves with increasing truncation number. The results
are in Table 2, where the effective index of all plasmon-
like modes found by the FMM is given with increasing
truncation number. With the increase in truncation num-
ber it is found that TMM and FMM modes have their
counterparts except for a few modes of order close to the
truncation number. All common modes exhibit a regular
convergence behavior as illustrated in Table 2 with the
example of the plasmon mode of order zero. The FMM
spurious modes behave very differently with increasing
truncation number: there is no clear tendency in the evo-
lution of their effective index. It is an interesting feature
of the spurious modes that their unstable effective index
is always notably larger than the true plasmon mode ef-
fective index. Once the fundamental plasmon mode effec-
tive index is known or even estimated, this feature can be
used as a second criterion to identify them within the
mode spectrum.

Figure 2 illustrates the transverse magnetic field dis-
tribution of a spurious plasmon mode and of the funda-
mental plasmon mode over one period across the grating
grooves with a groove width of 93.518 nm. Unlike in the
fundamental plasmon, the real and imaginary parts of
the spurious modal field oscillate at the largest spatial
frequency of the Fourier series, and their field has a
larger amplitude in the metal ribbon. This again charac-
terizes the spurious modes as modes of high order close to
the truncation number, whereas their plasmon-like char-
acter would place them at the beginning of the modal
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Table 2. Evolution of the Effective Index of the Spurious FMM Modes in a Lossless Metal Grating with the
Truncation Number N

Truncation
Number N-1 N-2 N-3 N-4 Mode 0
31 12.5095 6.09379 5.3312 — 1.10476
33 10.5525 7.30255 5.33273 6.347 1.10570
35 19.3175 18.8975 6.43998 6.00416 1.10520
37 11.8483 7.49204 5.98195 — 1.10423
39 36.0806 13.0032 7.77949 6.2364 1.10400
41 27.0125 16.1508 7.2718 6.89867 1.10455
43 12.2049 8.76289 6.73086 — 1.10506
45 16.4006 8.19296 7.2571 — 1.10496
47 15.017 8.60048 7.51235 — 1.10450
49 50.1534 13.6935 9.58697 7.57716 1.10428
51 20.7432 8.67485 8.37703 — 1.10449
53 72.2236 14.7316 9.98877 8.19877 1.10479
55 32.5439 16.1913 10.0785 8.52735 1.10483
57 26.8626 18.9459 9.70253 9.14669 1.10460
59 75.1167 15.2807 11.2021 8.97274 1.10443
61 26.7488 19.5400 10.5004 9.5878 1.10448
121 38.8897 32.1015 19.2355 18.3573 1.10459

“The last column gives the effective index of the regular plasmon mode as a reference.

spectrum and can be used as a third criterion for identi-
fying them within the mode spectrum.

The appearance and behavior of spurious modes can be
explained by the well-known Gibbs phenomenon [11,12].
The Fourier series at a jump discontinuity has large os-
cillations near the jump. The amplitude of oscillations is
not reduced as the number of representing harmonics in-
creases, but it approaches a finite limit. When the func-
tion changes sign at the jump (permittivity function in
the case of a metal grating), such oscillations can increase
the number of zero crossings of the truncated Fourier se-
ries. This corresponds physically to the inclusion of new
metal-like layers in one grating period. Every additional
metal layer supports at least one plasmon mode; thus the
number of plasmon-like modes increases with the number
of such artificial interfaces.

4
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Fig. 2. (Color online) Example of FMM modal H field of mode

N-1 (multi-peaked curve, red online) and regular plasmon mode

0 (lower curve, black) for the truncation number 31. The groove is
located between x=0 and 93.518 nm.

Although such a consideration brings some light and
helps explain the phenomenon, it does not deliver an ex-
plicit analysis of the problem. Together with the permit-
tivity e(x), the inverse pemittivity 1/e(x) as well as the
field Hy(x) are represented in the FMM by their Fourier
series. The new technique of Maxwell’s equation trunca-
tion of [1], which is a big step forward for the FMM,
makes a physical interpretation even more involved. This
all renders a fine modal analysis of the truncated Fourier
transformed problem and of its spurious modes very com-
plicated if not impossible.

Figure 3 illustrates the behavior of the spurious mode
effective indices versus the groove width in the
210—-290 nm interval (the largest range with the presence
of four spurious modes). The truncation number is 31. It
is clear that the mode effective index behavior is regular
without any sign of instability unlike what one would ex-
pect from the noise on the minus-first-order diffraction ef-
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Fig. 3. (Color online) Effective index spurious modes depen-
dence versus groove width.



3784 J. Opt. Soc. Am. A/Vol. 24, No. 12/December 2007

ficiency in Fig. 1 in the same interval. This leads one to
infer that the observed instabilities do not have a numeri-
cal origin but can be explained by an interference effect of
the spurious modes in the grating layer.

This section can be concluded by the following state-
ments:

e The “spurious” modes do not exist physically; they
are a mathematical artifact due to the truncation of an in-
finite set of equations.

e The “spurious” modes appear only in structures
where there is a transition from a dielectric to a metal
character;

e The set of “spurious” modes is limited to a few mem-
bers regardless of the truncation number; this property
has been observed in structures having a wavelength
scale period and should not be extrapolated without
verification.

3. FOURIER MODE INTERFERENCE

From Tables 1 and 2 one sees that the spurious Fourier
modes may have a very large effective index. These modes
will consequently experience close to unity reflection at
the grating layer interfaces because of the large imped-
ance mismatch. For example, under the conditions of
Table 1, mode N-3 experiences a power reflection coeffi-
cient into itself of 0.99 at the air interface and 0.997 at
the bottom metal interface. This implies that there can be
in the lossless metal case a very large energy accumula-
tion for this mode between both grating layer interfaces if
the Fabry—Perot resonance condition is fulfilled. Although
the number of spurious modes is limited, the dependence
of their effective index on the structure parameters and
incident conditions is extremely sensitive and rather com-
plicated; therefore one can expect a high density of sharp
resonances. However, such resonances are not to be inter-
preted as noise; they do behave as resonances. Let us con-
sider the example of an instability peak at the groove
width of 93.518 nm and investigate its behavior in a short
range of groove width from 93.4 nm to 93.6 nm. The dif-
fraction efficiency represented in Fig. 4 reveals a typical
true resonance curve without any sign of numerical insta-
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Fig. 4. Resonance effect of spurious Fourier mode N-3 self-
interference in the grating layer.
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Fig. 5. Set of resonances under a fine scan of the groove width.

bility. At any point of the graph in Fig. 1, a fine scan of the
groove width reveals a high density set of resonances of
different width and strength as shown in Fig. 5.

Figure 6 illustrates the resonant accumulation of en-
ergy resulting in a large H field amplitude inside the grat-
ing layer related with the spurious Fourier modes. The
parameters correspond to the exact mode N -3 resonance
position of Fig. 4. The H field distribution is typical for a
standing wave inside a Fabry—Perot resonator. At the
field peaks, the H field amplitude reaches as much as 67
times the incident field amplitude. This anomalously
strong field enhancement is dramatically illustrated by
the scale of the 3D graph, where the incident field pattern
for z<0 appears to be flat and close to zero and where all
other modal fields are by far dominated by the mode NV
—3 resonance. The fact that there is a large field ampli-
tude in the ideal metal region highlights the nonphysical
character of such artificial solution.

At this stage it can be concluded that the instabilities
exhibited in Fig. 1 have nothing to do with numerical ar-
tifacts. They are simply and meaningfully the conse-
quence of the Fourier mode interference in the grating
layer. The effective index of such modes is so large and
their Fabry—Perot resonance in the grating depth is so
strong with so high a quality factor that the least change

Fig. 6. (Color online) Field enhancement in the grating region
under spurious mode resonance. The air groove is located be-
tween 0 and 0.187 of the X/period axis.
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of depth or of line/space ratio or in wavelength leads to
the suppression of the observed resonance, or possibly to
the resonance of another spurious mode or to the coupling
between two such modes. The noisy curve of Fig. 1 thus
represents the exact solution of the considered math-
ematical problem with a given size of truncated matrix
containing the coefficients of the differential system.

4. CURING THE FOURIER MODAL METHOD
FOR METAL-DIELECTRIC STEP
PERMITTIVITY PROFILES

The modal phenomenology of the previous section sheds
light on what the FMM actually does when it fails to de-
liver the exact solution of the step permittivity profile of a
metal-dielectric structure. This does not yet provide the
path from the noisy pattern of Fig. 1 to the smooth curve
provided by the referenced TMM.

Popov et al. [6] have suggested artificially adding some
absorption in the grating structure to damp the instabili-
ties. From the above consideration it is clear why such in-
tuition does lead to an improvement: with large enough
absorption the propagation length of the spurious modes
will decrease, as for instance that of a real short-range
plasmon, with a resulting decrease of the corresponding
Fabry—Perot quality factor and of the contrast of the noisy
interference pattern. With the modal understanding
gained in the previous section it is now possible to ad-
dress the problem anew and find out a finer, and at the
same time more general, solution. Since the spurious
modes are the effect of the truncation of the infinite ma-
trix containing the coefficients of the differential system
in combination with the permittivity step transition from
dielectric to metal character, the problem can be ex-
pressed as “What should be kept of these modes to ensure
continuity toward the true solution?” Leaving aside a
single one of these spurious modes in the field-matching
equations leads to a wrong solution because the eigen-
mode set becomes incomplete. As Table 2 suggests, and as
Fig. 2 confirms, these spurious TM modes exhibit an os-
cillatory character with a spatial frequency that is related
to the spatial frequency of the highest-order harmonics
considered in the truncated system. Thus, these modes
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Fig. 7. Diffraction efficiency of the minus first order calculated
by the FMM with the described spurious modes filtering.
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Fig. 8. (Color online) Difference of diffraction efficiencies calcu-
lated by TMM and FMM for 31 (upper curve, black) and 61
modes (lower curve, red online).

are located at the end of the modal spectrum, and for this
reason one can reasonably expect that with the increase
in the truncation number these modes should play a de-
creasing role in the convergence process. This intuitive
reasoning leads us to keep the spurious plasmon modes
for the sole purpose of the field matching and to forbid
them to propagate through the grating layer in order to
exclude their unpredictable high-contrast interference ef-
fect. This implies that the spurious plasmon mode ampli-
tudes are set to zero once they have been used in the in-
terface field-matching equations. In other words, the loss
factor of these modes is set to infinity. Applying this spu-
rious mode management to the structure of Fig. 1 with
the FMM gives the diffraction efficiency curve of Fig. 7,
where there is no longer a trace of any instability and the
results are very close to those given by the reference
TMM.

Figure 8 presents the difference of minus-first-order or-
der diffraction efficiency calculated by the TMM and the
FMM considering 31 and 61 modes and shows that the
suggested mode management enables the FMM to con-
verge toward the exact reference result.

Figures 9 and 10 illustrate the H field distribution in-
side the grating region under the conditions of Fig. 6 with
mode filtering in the FMM (Fig. 9) and calculated by the

Fig. 9. (Color online) H field distribution in the grating region
calculated by the FMM with mode filtering.
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Fig. 10. (Color online) H field distribution in the grating region
calculated by the reference TMM.

reference TMM (Fig. 10). These figures show that the two
methods give a close to identical field distribution, but
that the field calculated by the FMM still exhibits a
bumpy character, while the field calculated by the TMM
has a smooth and physically correct shape. The suppres-
sion of the spurious mode resonances thus leads to the ac-
tual physical field distribution inside the grating region.
In contrast to Fig. 6, the field inside the ideal metal region
in Figs. 9 and 10 is now close to zero, and it is clear that
the remaining standing-wave field character in the grat-
ing region is due to the Fabry—Perot resonance of the fun-
damental plasmon mode.

We have so far identified and characterized the Fourier
modes responsible for the observed instabilities of the
FMM, we have explained the high-contrast interference
and resonance mechanisms involved, and we have sug-
gested a mode-filtering principle permitting the suppres-
sion of the instabilities while still satisfying the boundary
conditions of the electromagnetic problem. Unlike in [6,7]
where the structure as a whole is made more lossy, which
affects all modes, the present approach is highly selective
and treats the actual electromagnetic problem. The devel-
opment of a safe filtering algorithm can now be under-
taken on the basis of the following mode selection criteria:
(1) The spurious modes are always very slow waves;
therefore the only modes with which there may be confu-
sion are the true plasmon modes. (2) Their effective index
is much larger than that of a true slow wave plasmon. (3)
Their propagation constant is always extremely sensitive
to any change of parameter unlike that of the true plas-
mon modes. (4) Their field always has the largest spatial
frequency corresponding to the truncation number. (5)
Their field has high amplitude and high spatial frequency
in the metal parts.

5. SUPPRESSING THE FOURIER MODAL
METHOD INSTABILITIES FOR ARBITRARY
METAL-DIELECTRIC PROFILES

The unpredictable high-contrast interferences of spurious
modes as well as between them is dangerous in the case of
nonlamellar metal or metal—dielectric gratings of an arbi-
trary groove profile where the slicing technique is used, as
is most often the case. In such a general case the grating
layers are rather thin, but high-quality Fabry—Perot ef-
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fects persist even in the case of lossy metals for two rea-
sons: First, the effective index of the spurious modes can
be so large that the Fabry—Perot modes might not all be
cut off. Second, the slices are usually so thin that the spu-
rious modes’ damping coefficient may be small enough to
permit resonances within the slice. The persistence of
spurious mode resonances in thin lossy metal grating
slices is clearly evidenced in Fig. 11, showing the diffrac-
tion efficiency of the minus first order in a binary grating
layer of 20 nm thickness only under the excitation condi-
tions and same period as in Fig. 1. The metal refractive
index is 0.5+710. This case is ten times more lossy than
that considered in [7]; nevertheless, the diffraction effi-
ciency still reveals strong interference instability. Figure
11 shows that the suggested spurious mode filtering com-
pletely removes the instabilities. This thin-grating result
implies that the approach suggested in [6], consisting of
introducing higher artificial losses in the structure, would
lead here, as well as in the case of the sliced arbitrary pro-
file hereunder, to a persistence of the instabilities.
Having evidenced the role of spurious modes in a thin
lossy slice, we now consider a complete nonlamellar grat-
ing groove. The chosen example is that of a sinusoidal
metal grating profile because there is for this profile an
exact reference solution by application of the C method
[13,14]. The smooth sinusoidal profile will be cut up into a
number of horizontal slices. A complex refractive index of
ny=0.5+110 is considered, which is very close to the gold
refractive index at the incident wavelength of 1550 nm.
The grating period is 1500 nm, and the peak-to-trough
grating depth is 500 nm. The incident angle is 30 deg un-
der TM polarization. The chosen number of slices of
10 nm thickness is 50. The diffraction efficiency of the mi-
nus first order versus the number of modes (truncation
number) is presented in Fig. 12 for the FMM method
without (middle curve, red online) and with (lower curve,
blue online) the suggested mode filtering and for the
TMM method (upper curve, green online). The horizontal
line corresponds to the reference value of the diffraction
efficiency of a sinusoidal grating calculated by the C
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Fig. 11. (Color online) Diffraction efficiency of the minus first

order of a 20 nm thin lossy metal grating without (noisy curve,

black) and with (smooth curve, red online) spurious modes

filtering.
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Fig. 12. (Color online) Diffraction efficiency of the minus first
order of a sinusoidal grating calculated by the C method (hori-
zontal line) and for a sliced grating calculated by the FMM with-
out (middle curve, red online) and with (lower curve, blue online)
spurious modes filtering and calculated by the TMM (upper
curve, green online).

method. It is worth noting that the C method requires
only +7 orders (15 Fourier modes) to provide 108 accu-
racy.

This last figure, representing the convergence rate of
the different methods, teaches us the following:

e The interference of spurious modes in sliced metal
gratings provokes instabilities in the convergence curve
even in the case of lossy metals in the near-infrared spec-
trum.

e The suggested spurious mode filtering ensures a
smooth convergence curve and offers the possibility of us-
ing asymptotic methods to improve accuracy of the result.

¢ The initial convergence rate of the TMM in a sliced
grating is much faster than that of the FMM.

It should be pointed out that the example of a sinu-
soidal grating as a nonlamellar profile was chosen here
only because it permits a comparison with a reference
method. A sinusoidal profile is actually not the type of
profile for which a slicing modal method is best adapted
because of the presence of corners resulting from the
staircase approximation and especially of the nonrealistic
duty cycle of the first and last slices. The question of the
convergence rate among the three considered modal ap-
proaches should consequently not be considered as settled
by this numerical experiment, the main teaching in Fig.
12 being that of the persistence of the instabilities in non-
lamellar profiles even in the presence of lossy metals and
their removal by means of the proposed filtering principle.
The convergence behavior of the TMM versus the number
of slices and the number of modes in a sinusoidal metal
grating has been exhaustively investigated [15] and will
be reported elsewhere.

6. CONCLUSION

The above modal analysis of the Fourier modes shows
that the failure of the Fourier modal method (FMM) to
provide reliable results in the case of metal-dielectric
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gratings under TM incidence cannot be accounted for by
numerical instabilities. These instabilities are actually
the deterministic result of the interference, coupling, and
resonance effects of plasmon-like Fourier modes gener-
ated by the truncation of the infinite matrix containing
the coefficients of the differential system. The solution of
this system is highly sensitive to the optogeometrical
grating parameters because the involved spurious modes
are very slow waves of very high spatial frequency expe-
riencing high reflection at the border of the grating region
and grating slices.

The present modal analysis of the problems faced by
the rigorous coupled-wave analysis (RCWA) or the FMM
also gives a hint as to how to process these spurious
modes in the objective of getting close to the exact solu-
tion while removing the instabilities. It was found on the
basis of a sole physical rationale, but without mathemati-
cal demonstration, that keeping the spurious modes for
satisfying the boundary conditions and forbidding their
propagation suppresses the instabilities completely and
permits a smooth, although slow, convergence toward the
exact solution.

It was also shown that the instabilities persist in shal-
low gratings and, most important, in arbitrary profile
metal-dielectric gratings in the presence of lossy metals,
and that the proposed filtering principle suppresses the
instabilities.

It can be considered that the field of usability of the
FMM or the RCWA has now been opened to arbitrary 1D
gratings under arbitrary incidence conditions. The true-
mode method remains the reference method for metal—
dielectric structures under TM incidence. It also provides
very quickly and with a restricted number of modes a re-
sult that is close to the exact solution.

The comparison between methods that has been
achieved in the present paper has the character of an ob-
jective and up-to-date comparison in that the different
methods have been implemented with their last known
improvements and that they have been homogeneously
implemented at an identical level of highly professional
coding methodology and skills. The reader may check the
results of this paper by using the free codes available at
www.mcgrating.com.

ACKNOWLEDGMENT

The authors are grateful to Maud Sarrant-Foresti, of
Saint-Gobain Recherche, Paris, for her contribution to the
finalization of the 1D true-mode method, which has
served in the present comparison. This paper is a contri-
bution of O. Parriaux and A. V. Tishchenko to a modeling
benchmarking action in the Network of Excellence of the
European Commission on Microoptics (NEMO).

REFERENCES

1. P. Lalanne and G. M. Morris, “Highly improved
convergence of the coupled-wave method for TM
polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).

2. L. Li, “Use of Fourier series in the analysis of
discontinuous periodic structures,” J. Opt. Soc. Am. A 13,
1870-1876 (1996).

3. G. Granet, and B. Guizal, “Efficient implementation of the



3788

J. Opt. Soc. Am. A/Vol. 24, No. 12/December 2007

coupled-wave method for metallic lamellar gratings in TM
polarization,” J. Opt. Soc. Am. A 13, 1019-1023 (1996).

M. Neviere and E. Popov, Light Propagation in Periodic
Media: Differential Theory and Design (Marcel Dekker,
2003).

E. Popov and M. Neviere, “Grating theory: new equations
in Fourier space leading to fast converging results for TM
polarization,” J. Opt. Soc. Am. A 17, 1773-1784 (2000).

E. Popov, B. Chernov, M. Neviere, and N. Bonod,
“Differential theory: application to highly conducting
gratings,” J. Opt. Soc. Am. A 21, 199-206 (2004).

K. Watanabe, “Study of the differential theory of lamellar
gratings made of highly conducting materials,” J. Opt. Soc.
Am. A 23, 69-72 (2006).

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams,
and J. R. Andrewartha, “The dielectric lamellar diffraction
grating,” Opt. Acta 28, 413-428 (1981).

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams,

10.

11.

13.

14.

15.

Lyndin et al.

and J. R. Andrewartha, “The finitely conducting lamellar
diffraction grating,” Opt. Acta 28, 1087-1102 (1981).

M. Foresti, L. Menez, and A. Tishchenko, “Modal method in
deep metal-dielectric gratings: the decisive role of hidden
modes,” J. Opt. Soc. Am. A 23, 2501-2509 (2006).

J. W. Gibbs, “Fourier series,” Nature 59, 200 (1898).

J. W. Gibbs, “Fourier series,” Nature 59, 606 (1899).

J. Chandezon, M. T. Dupuis, and G. Cornet, “Multicoated
gratings: a differential formalism applicable in the entire
optical region,” J. Opt. Soc. Am. 72, 839-846 (1982).

T. Vallius, “Comparing the Fourier modal method with the
C method: analysis of conducting multilevel gratings in TM
polarization,” J. Opt. Soc. Am. A 19, 1555-1561 (2002).

M. Foresti, “Etude et développement de systéemes
nanostructurés pour verres optiquement fonctionnels,”
Ph.D. thesis (Université Jean Monnet, Saint-Etienne,
2007).



