
Gérard Granet Vol. 15, No. 5 /May 1998/J. Opt. Soc. Am. A 1121
Analysis of diffraction by surface-relief crossed
gratings with use of the Chandezon method:
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A new formulation of the Chandezon method for crossed gratings is presented. In the nonorthogonal trans-
lation coordinate system, an arbitrary field in a homogeneous source-free region can be expressed as the sum
of a TE field and a TM field. It is shown that the whole solution can be derived from the eigensolutions of an
operator independent of the polarization. In addition, use is made of the S-matrix formalism to include
multilayer coated crossed gratings with parallel faces. Numerical results are given for sinusoidal crossed
gratings and pyramidal gratings. © 1998 Optical Society of America [S0740-3232(98)02005-5]
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1. INTRODUCTION
The scattering of doubly periodic or crossed gratings has
been the subject of many studies. Rigorous methods for
two-dimensional diffraction gratings include the finite-
difference method,1 the method of variation of
boundaries,2 rigorous coupled-wave analysis,3–7 and the
curvilinear coordinate methods,8–10 among which the
Chandezon (C) method is the most popular. From a nu-
merical point of view, this last method and rigorous
coupled-wave analysis are computationally simple.
Hence only basic linear algebra operations are required:
seeking eigenvalues and eigenvectors and solving linear
systems. The accuracy of the results is linked with the
number of spatial harmonics retained in the calculation.
For diffraction by crossed gratings, the size of the matri-
ces involved in computation is squared in comparison
with that of the corresponding one-dimensional problem.
Therefore it is of crucial importance to derive the smallest
possible eigenvalue problem. This is achieved, with rig-
orous coupled-wave analysis, by using a second-order dif-
ferential operator.

In an earlier paper9 I have already presented the gen-
eralization of the C method to accommodate surface-relief
crossed gratings. The original feature of this method is
the use of a nonorthogonal coordinate system. An opera-
tor was derived that exhibits a polarization degeneracy.
It was then possible to reduce the initial eigenvalue prob-
lem to two eigenvalue problems, the size of the associated
matrices being half the size of the initial one. The aim of
this paper is to present a new formulation of the C
method as applied to crossed gratings. Following
McPhedran et al.,11 the field is decomposed into trans-
verse electric (TE) and transverse magnetic (TM) vector
fields. These are defined in the same way as is habitual
in the theory of waveguides, with the direction orthogonal
to the interface plane being the preferred direction.

In the previous formulation, the complete eigensolution
0740-3232/98/051121-11$15.00 ©
was obtained by appealing to two different eigenequa-
tions in turn before combining the two to reconstruct the
original field vector. In the present formulation, the TE
and TM fields are derived from the solution of a single
scalar eigenequation. It is obvious that the matrix asso-
ciated with this new operator is also half the size of the
initial one. From a numerical point of view, I believe
that this is a great improvement, since solving the eigen-
problem is the most time-consuming part of the computer
code used.

Numerical examples are provided to demonstrate the
effectiveness of the method. In addition, the S-matrix
formalism is used to include multilayer coated crossed
gratings with parallel faces, which are assimilated to pla-
nar stratified media, thanks to the new coordinate sys-
tem.

2. DESCRIPTION OF THE PROBLEM AND
NOTATION
The general system considered in this calculation is
shown in Fig. 1. It consists of a multilayer stack with
Q 2 1 layers, labeled by j 5 1, 2, ..., Q 2 1, of refractive
index n j and thickness ej . The entry and exit media
have refractive indices n0 and nQ , respectively. To ac-
commodate lossy media, the refractive indices n j ,
j 5 1, 2, ..., Q, are taken to be complex quantities.
These regions are separated by Q interfaces labeled by
j 5 1, 2, ..., Q; that is, the jth layer has the jth interface
as the upper boundary and the ( j 1 1)th interface as the
lower boundary. The normal to the stack, in the direc-
tion of decreasing j, is the y axis. All the interfaces have
an identical periodic modulation, with the period dx in the
x direction and the period dz in the z direction. The up-
permost interface is located at the origin of the y axis, so
that the equation of the top surface of the jth layer is
given by
1998 Optical Society of America
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yj 5 2(
i,j

ei 1 a~x, z !, (1)

where the function a(x, z) represents the shape modula-
tion. It can be expanded into a Fourier series:

a~x, z ! 5 (
p,q

apq expF2i2pS px
dx

1
qz
dz

D G , (2)

where

apq 5
1

dxdz
E

0

dxE
0

dz

a~u, v ! expF i2pS pu
dx

1
qv
dz

D Gdudv.

(3)

A. Incident Plane Wave
This structure is illuminated from the uppermost medium
by a homogeneous monochromatic plane wave that is lin-
early polarized and has a vacuum wavelength l and an
angular frequency v (Fig. 2). The exp(ivt) time depen-
dence is assumed and will be suppressed throughout this
paper. In the Cartesian coordinate system, the compo-
nents of the wave vector k and those of the unit-
amplitude electric-field vector û are, respectively,

kx 5 k sin u cos f, ky 5 2k cos u,

kz 5 2k sin u sin f, (4)

Fig. 1. Multilayer coated crossed grating.

Fig. 2. Definition of the incident plane wave.
with k 5 2p/l 5 vAm0e0, where e0 and m0 are the per-
mittivity and the permeability of vacuum, respectively;
and

û 5 ~cos d cos u cos f 2 sin d sin f!x̂ 1 ~cos d sin u!ŷ

1 ~cos d cos u sin f 1 sin d cos f!ẑ, (5)

where d represents the angle between the electric-field
vector and the plane of incidence.

B. TE and TM Vector Fields: Rayleigh Expansion
In what follows, we refer to the medium with the sub-
script j. In rectangular coordinates any wave function c
of the form

c j~x, y, z ! 5 (
a

(
g

Aag exp@2ik~ax 1 b j y 1 gz !#

(6)

with

a2 1 b j
2 1 g2 5 n j

2 (7)

is a solution to the Helmholtz equation.12

In our problem a and g can be expressed as

a 5 am 5 a0 1 m
l

dx
, g 5 gn 5 g0 1 n

l

dz
, (8)

with

a0 5 sin u cos f, g0 5 2sin u sin f. (9)

From Eq. (7), we can then deduce that

b j mn
2 5 n j

2 2 am
2 2 gn

2. (10)

In bigrating problems it is advantageous to represent the
electromagnetic-field components as a linear combination
of two types of solutions corresponding to Eyj 5 0 and
Hyj 5 0. We refer to these solutions, or polarizations, as
TE or TM to the Oy axis. Transverse means the absence
of an Oy component of the relevant field quantity. Fur-
thermore, Eyj and Hyj satisfy separately the scalar Helm-
holtz equation. We write them as

Eyj 5 (
m,n

Aj mn
1TM exp@2ik~amx 1 b j mn

1 y 1 gnz !#

1 (
m,n

Aj mn
2TM exp@2ik~amx 1 b j mn

2 y 1 gnz !#,

(11)

Hyj 5 (
m,n

Aj mn
1TE exp@2ik~amx 1 b j mn

1 y 1 gnz !#

1 (
m,n

Aj mn
2TE exp@2ik~amx 1 b j mn

2 y 1 gnz !#,

(12)



Gérard Granet Vol. 15, No. 5 /May 1998/J. Opt. Soc. Am. A 1123
b j mn
1

5 H ~n j
2 2 am

2 2 gn
2 !1/2 if n j

2 2 am
2 2 gn

2 > 0

2i~am
2 1 gn

2 2 n j
2!1/2 if n j

2 2 am
2 2 gn

2 , 0
,

(13)
b j mn

2

5 2b j mn
1 . (14)

These expansions are known as Rayleigh expansions.
Then, separating Maxwell’s equations for Eyj and Hyj

allows us to express the other field components as a linear
combination of TE and TM vector fields:

c j
R 5 (

m,n
~Aj mn

1TE cj mn
1R TE 1 Aj mn

1TMcj mn
1R TM!

3 exp@2ik~amx 1 b j mn
1 y 1 gnz !#

1 (
m,n

~Aj mn
2TE cj mn

2R TE 1 Aj mn
2TMcj mn

2R TM!

3 exp@2ik~amx 1 b j mn
2 y 1 gnz !#, (15)

where

c j
R 5 S Ezj

ZHxj

ZHzj

Exj

D , (16)

cj mn
1R TE 5

1

b j mn
2 2 n j

2 S am

b j mn
1 am

b j mn
1 gn

2gn

D , (17)

cj mn
1R TM 5

1

b j mn
2 2 n j

2 S b j mn
1 gn

2n j
2gn

n j
2am

b j mn
1 am

D , (18)

Z 5 Am0 /e0.

Similar expressions hold for cj mn
2R TE and cj mn

2R TM .
In the above relations, the superscripts 1 and 2 corre-

spond to waves that propagate or decay in the positive or
negative Oy direction, respectively. The superscript R
refers to Rayleigh expansion. It can be verified that,
by setting a0 5 sin u cos f, g0 5 2sin u sin f, b00

2

5 2cos u, A0 00
2TE 5 cos d, and A0 00

2TM 5 sin d, we obtain
the components of the incident electric field as given by
Eq. (5). Our aim is to determine the coefficients
A0 mn

1TE A0 mn
1TM , AQ mn

2TE , and AQ mn
2TM , from which we shall cal-

culate the reflected and transmitted efficiencies.

3. THEORY
A. Eigenvalue Equation
To write in a simple manner the continuity conditions of
the electromagnetic field on the interfaces, we use the so-
called translation coordinate system defined as follows:

x1 5 x, x2 5 u 5 y 2 a~x, z !, x3 5 z. (19)

The contravariant components of the corresponding met-
ric tensor are given by
gij 5 F 1 2
]a
]x

0

2
]a
]x

1 1 S ]a
]x D 2

1 S ]a
]z D 2

2
]a
]z

0 2
]a
]z

1

G . (20)

According to Post,13 Maxwell’s equations take the form

j ijk] jEk 5 2ikAggijZHj , (21)

j ijk] jZHk 5 ikn2AggijEj , (22)

where i, j, k P $1, 2, 3%, n is the refractive index of the
medium, ] j ( j P $1, 2, 3%) stands for ]/]x j, j ijk is the
Levi–Cività indicator:

j ijk

5 5
1 1 if ~i, j, k ! is an even permutation of

~1, 2, 3 !

21 if ~i, j, k ! is an odd permutation of

~1, 2, 3 !

0 otherwise

;

(23)

Ej and Hk denote the complex amplitudes of the covariant
components of the electric and magnetic fields, and g
5 det@( g ij)21#.

Since the metric tensor components are independent of
the x2 coordinate, a system of four equations can be easily
deduced from system (21) and (22); this system is ex-
pressed as

]2S E3

ZH1

ZH3

E1

D 5 L1,3S E3

ZH1

ZH3

E1

D , (24)

where L1,3 is a linear differential operator depending only
on the coordinates x1 and x3. It is then possible to sepa-
rate the variables to find elementary solutions of the form

S~x1, x2, x3! 5 S~x1, x3!exp~2ikrx2!, (25)

where S represents any of the six components of the field.
Indeed, in Ref. 9, I have solved the eigenvalue equation
(24). However, another solution can be derived by follow-
ing two steps. First, from Maxwell’s equations and
thanks to the invariability of the problem along the y di-
rection, the components with subscripts 1 and 3 can be ex-
pressed in terms of the components E2 and H2 :

~]2
2 1 v2me!E3 5 2~ivmg12]2 1 ivm]1!H2

1 ~]2]3 2 v2meg32!E2 , (26)

~]2
2 1 v2me!H1 5 ~]2]1 2 v2meg12!H2

2 ~ive]3 1 iveg32]2!E2 , (27)

~]2
2 1 v2me!H3 5 ~]2]3 2 v2meg32!H2

1 ~]2iveg12 1 ive]1!E2 , (28)
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~]2
2 1 v2me!E1 5 ~ivm]3 1 ivmg32]2!H2

1 ~]2]1 2 v2meg12!E2 . (29)

Second, after some tedious calculation, and provided that
the medium is homogeneous, it can be shown that the lon-
gitudinal components E2 and H2 obey the same wave
equation:

g22]2
2f 1 ]2@~ g21]1 1 ]1g21!f# 1 ]2@~ g23]3 1 ]3 g23!f#

1 ]1
2f 1 ]3

2f 1 v2mef 5 0. (30)

Thus, independent of the coordinate system, an arbitrary
field in a homogeneous source-free region can be ex-
pressed as the sum of a TE field and a TM field:

c 5 sTEcTE 1 sTMcTM, (31)

where c is a vector whose components are the functions
E3 , H1 , H3 , and E1 .

Some additional calculus has to be done to deal with
the particular case where ]2

2 1 v2me 5 0. This case is
such that both E2 and H2 are equal to zero (that is, TEM
polarization!). Hence the determination of the electro-
magnetic field amounts to solving Eq. (30) and deducing
the TE and TM vector fields according to

~]2
2 1 v2me!cTE

5 S 2~ivmg12]2 1 ivm]1!f
~]2]1 2 v2meg12!f
~]2]3 2 v2meg32!f

~ivmg32]2 1 ivm]3!f
D if ]2

21v2meÞ0,

cTE 5 S f
6ivef

0
0

D if ]2
2 1 v2me 5 0; (32)

~]2
2 1 v2me!cTM

5 S ~]2]3 2 v2meg32!f
2~iveg32]2 1 ive]3!f
~iveg12]2 1 ive]1!f
~]2]1 2 v2meg12!f

D if ]2
2 1 v2me Þ 0,

cTM 5 S 0
0
f

6ivmf
D if ]2

2 1 v2me 5 0. (33)

When the medium is homogeneous and the metric tensors
are independent of the coordinates x2 and x3, two TE and
TM fields are available: one to x2 and the other to x3.
This situation is that of monoperiodic gratings, whether
used in a classical or a conical mount.

B. Numerical Solution
To be solved with an eigenvalue method, Eq. (30) has to
be transformed. With the introduction of f8 5 (i/k)
3 (]f/]u), it becomes a generalized eigenvalue equation
of the form

LA 1,3
]

]u S f
f8 D 5 LB 1,3S f

f8 D , (34)
where LA 1,3 and LB 1,3 are linear differential operators
depending only on coordinates x1 and x3:

LA 1,3

5 F 2g12
]

]x
2

]

]x
g12 2 g23

]

]z
2

]

]z
g23 2ikg22

i
k

0
G ,

(35)

LB 1,3

5 F 2k2n2 2
]2

]x2 2
]2

]z2
0

0 1
G . (36)

It is then possible to separate the variables to find el-
ementary solutions of the form

f~x, u, z ! 5 f~x, z !exp~2ikru !. (37)

Since the function a(x, z) is periodic, f is a pseudoperi-
odic function and can therefore be decomposed into Flo-
quet harmonics:

f~x, z ! 5 (
m,n

fmn exp@2ik~amx 1 gnz !#. (38)

We assume that a finite sum of these harmonics is enough
to represent the function; hence

f~x, z ! 5 (
m52M

m51M

(
n52N

n51N

fmn exp@2ik~amx 1 gnz !#.

(39)

Substituting this expression into Eq. (34) and expanding
the components of the metric tensor into a Fourier series
as

g12 5 (
m,n

gmn
12 expF2i2pS mx

dx
1

nz
dz

D G , (40)

g23 5 (
m,n

gmn
23 expF2i2pS mx

dx
1

nz
dz

D G , (41)

g22 5 (
m,n

gmn
22 expF2i2pS mx

dx
1

nz
dz

D G , (42)

with

gmn
12 5 2i

2pm
dx

amn , (43)

gmn
23 5 2i

2pn
dz

amn , (44)

gmn
22 5 dmn 1 (

u,v
gm2u,n2v

12 guv
12 1 (

u,v
gm2u,n2v

23 guv
23 ,

(45)

we obtain two sets of coupled first-order differential equa-
tions:

(
p,q

~2gm2p,n2q
12 ap 2 gm2p,n2q

12 am 2 gm2p,n2q
23

3 gq 2 gm2p,n2q
23 gn)rjfmn 1 (

p,q
gm2p,n2q

22 rjfmn8

5 ~n j
2 2 am

2 2 gn
2 !fmn ,
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rjfmn 5 fmn8 . (46)

These equations can be written in matrix form:

ArS f
f8 D 5 BS f

f8 D , (47)

where A and B are square matrices of dimension 2L,
with L 5 (2M 1 1)(2N 1 1), specified by the left-hand
side and the right-hand side of Eqs. (46), respectively.

Finally, in the jth medium, the function f j can be ex-
pressed as

f j~x, u, z ! 5 (
m52M

m51M

(
n52N

n51N

(
l51

l52L

f j, mn l exp~2ikrjlu !

3 exp~2ikamx !exp~2ikgnz !, (48)

where f j mn l is the upper part of the eigenvector of ma-
trix B21A associated with the eigenvalue 1/rjl .

It is observed numerically that there are two sets of
modes, the number of which are equal: those propagat-
ing or decaying in the positive y direction and those trav-
eling in the opposite direction. We denote these modes
by the superscripts 1 and 2, respectively.

The numerically computed eigenvalues and eigenvec-
tors depend on the truncation orders M and N. In the
following relation, we use two extra superscripts M and N
to indicate this dependence. Numerical experiments
show that, for two constants p and q,

lim
M,N→`

rj pq
MN 5 b j pq . (49)

In the above equation, we have specified the computed ei-
genvalues with two integers rather than one in order to
compare them with the Rayleigh eigenvalues b j pq . The
interesting feature of Eq. (49) is that the limit is indepen-
dent of the coordinate system. This is not surprising be-
cause in a homogeneous space the eigensolutions of Max-
well’s equations are just plane waves. Indeed, provided
that we substitute y for u-a(x, z), it can be shown that
the wave function c j of Eq. (6) is a solution of the wave
equation (30). However, the invariance of the eigensolu-
tions is severely destroyed by the matrix truncation that
is unavoidable in the numerical implementation. For the
C method to be successful, M and N have to be chosen
large enough so that the computed real eigenvalues coin-
cide with a great accuracy with the real Rayleigh eigen-
values. Hence the associated eigenvectors coincide with
plane waves expressed in the translation coordinate sys-
tem. As did Chandezon et al.,14 we replace, in the de-
composition of the function f on the B21A-matrix eigen-
vectors, the computed eigenvectors associated with real
eigenvalues by the corresponding truncated Rayleigh
eigenvectors. That is,

(
m52M

m51M

(
n52N

n51N

(
p,qPUj

f j mn pq exp~2ikrj pqu !

3 exp~2ikamx !exp~2ikgnz !, (50)

where
Uj 5 $~ p, q ! P @2M, M# 3 @2N, N#,

n j
2 2 ap

2 2 gq
2 . 0% (51)

is replaced by the truncated Fourier-series expansion of

(
p,q

exp$2ikb j pq@u 1 a~x, z !#%

3 exp~2ikapx !exp~2ikgqz !. (52)

Hence the function f j takes the following form:

f j~x, u, z !

5 (
m52M

m51M

(
n52N

n51N

(
p,qPUj

f j mn pq
1R exp~2ikb j pq

1 u !

3 exp~2ikamx !exp~2ikgnz !

1 (
m52M

m51M

(
n52N

n51N

(
p,qPVj

1

f j mn pq
1 exp~2ikrj pq

1 u !

3 exp~2ikamx !exp~2ikgnz !

1 (
m52M

m51M

(
n52N

n51N

(
p,qPUj

f j mn pq
2R exp~2ikb j pq

2 u !

3 exp~2ikamx !exp~2ikgnz !

1 (
m52M

m51M

(
n52N

n51N

(
p,qPVj

2

f j mn pq
2 exp~2ikrj pq

2 u !

3 exp~2ikamx !exp~2ikgnz !, (53)

where

f j mn pq
6R 5

1
dxdz

E
0

dxE
0

dz

exp@2ik~b j pq
6 !a~u, v !#

3 exp~2ikap1mu !exp~2ikgq1nv !dudv,

(54)

Vj
1 5 $~ p, q ! P ~@2M, M# 3 @2N, N# 2 Uj!,

Im~rj pq! , 0%, (55)

Vj
2 5 $~ p, q ! P ~@2M, M# 3 @2N, N# 2 Uj!,

Im~rj pq! . 0%. (56)

Im(rj pq) designates the imaginary part of rj pq , rj pq
1

P $rj pq , ( p, q) P Vj
1%, and rj pq

2 P $rj pq , ( p, q)
P Vj

2%. Once the eigenvalue problem is solved, the field
components of interest can be easily deduced from Eqs.
(32) and (33). The final form of the solution is therefore
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c j
l 5 (

m,n p,q
Aj pq

1l TEc j mn pq
1TE exp@2ikrj pq

1 ~u 2 ul!#

3 exp~2ikamx !exp~2ikgnz !

1 (
m,n p,q

Aj pq
1l TMc j mn pq

1TM exp@2ikrj pq
1 ~u 2 ul!#

3 exp~2ikamx !exp~2ikgnz !

1 (
m,n p,q

Aj pq
2l TEc j mn pq

2TE exp@2ikrj pq
2 ~u 2 ul!#

3 exp~2ikamx !exp~2ikgnz !

1 (
m,n p,q

Aj pq
2l TMc j mn pq

2TM exp@2ikrj pq
2 ~u 2 ul!#

3 exp~2ikamx !exp~2ikgnz !, (57)

where the superscript l, with l 5 j or l 5 j 2 1, refers to
the lth interface.

It should be noted that we get two expressions for the
field in medium j. Their difference lies in the phase ori-
gin, taken in u 5 uj for the first and u 5 uj 2 ej for the
second.

C. Boundary Conditions and S Matrices
The unknown constant coefficients depend on two physi-
cal phenomena of different nature. On the one hand,
crossing the interface, the total tangential field compo-
nents are continuous, which implies that forward and
backward waves are coupled. On the other hand, the
propagation in a direction for which the medium remains
constant creates only a dephasing or an attenuation with-
out coupling between the two kinds of waves. The
S-matrix formalism15–17 is now well established for the
study of modulated or planar stratified media. It is not
affected by numerical instabilities linked to the number
or the thickness of the layers. This is precisely because
the boundary conditions are written by dividing the
waves according to the propagation direction and not ac-
cording to the propagation medium. For a given struc-
ture, the S matrix connects the incoming waves with the
outgoing waves. Those qualifications have only a rela-
tive significance (see Figs. 3 and 4). In our problem the
incoming waves consist only of the backward waves of the
zeroth region, whereas the outgoing waves consist of the
forward waves of the Qth region and the backward waves
of the zeroth region. The sought S matrix is such that

S A1 pq
10 TE

A1 pq
10 TM

AQ11 pq
2Q TE

AQ pq
2Q TM

D 5 SS A1 pq
20 TE

A1 pq
20 TM

AQ11 pq
1Q TE

AQ pq
1Q TM

D , (58)

AQ pq
1Q TE 5 AQ pq

1Q TM 5 0 ;p and ;q, (59)

A1 pq
20 TE 5 H 0 if p or q Þ 0

cos d, if p and q 5 0
, (60)

A1 pq
20 TM 5 H 0 if p or q Þ 0

sin d if p and q 5 0
. (61)
1. Interface S Matrices
The tangential components of the field have to be continu-
ous across the jth interface:

c j
j~uj! 5 c j11

j ~uj!. (62)

Following the S-matrix approach, we define an S j21, j
j ma-

trix by writing

S Aj21
1j TE

Aj21
1j TM

Aj
2j TE

Aj
2j TM

D 5 S j21, j
j S Aj21

2j TE

Aj21
2j TM

Aj
1j TE

Aj
1j TM

D , (63)

S j21, j
j 5 ~cj21

2j TE cj21
1j TM cj

2j TE cj
2j TM!21

3 ~cj21
2j TE cj21

2j TM cj
1j TE cj

1j TM!. (64)

The A are column vectors of size L, with L 5 (2M 1 1)
3 (2N 1 1), the elements of which are the Apq , and the
c are the eigenvector matrices of size 4(L 3 L). For ex-
ample, we have

cj
1j TE 5 ~cj pq

1j TE! 5 S Ezj pq
1j

Hxj pq
1j

Hzj pq
1j

Exj pq
1j

D . (65)

2. Layer S Matrices
In the jth medium, bounded by the jth and ( j 1 1)th in-
terfaces, the scattered waves from one interface are the
incident waves on the other one:

S A j
1j TE

A j
1j TM

A j
2~ j11 ! TE

A j
2~ j11 ! TM

D 5 S j
j, j11S A j

2j TE

A j
2j TM

A j
1~ j11 ! TE

Aj
1~ j11 ! TM

D , (66)

with

S j
i, j11 5 F 0 0 w j

1 0

0 0 0 w j
1

w j
2 0 0 0

0 w j
2 0 0

G . (67)

w j
1 and w j

2 are diagonal matrices, the elements of which
are exp(2ikrj pq

1 ej) and exp(ikrj pq
2 ej), respectively.

Fig. 3. S matrix at an interface.

Fig. 4. S matrix of a layer.
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The global S matrix is obtained through classical recur-
sion formulas between the S j21, j

j and S j
j, j11 matrices.

D. Diffraction Efficiencies
The application of Poynting’s theorem, written in the
translation coordinate system, enables us to calculate the
power carried by the reflected and transmitted waves.
Let us denote by Nu the contravariant u component of the
complex Poynting vector:

Nu 5
1
2

~EzHx* 2 Hz* Ex!,

where Hx* and Hz* designate the complex conjugates of Hx
and Hz , respectively.

In the jth medium, the time and surface average power
carried by the ( p, q) wave, ( p, q) P Uj , is given by

Pj pq
6 5

1
dx

1
dz

E
0

dxE
0

dz

Nj pq
u6 dxdz

5
1
2 S (

m
(

n
Ezj mn pq

6TE Hxj mn pq* 6TE

2 (
m

(
n

Hzj mn pq* 6TE Exj mn pq
6TE D

1
1
2 S (

m
(

n
Ezj mn pq

6TM Hxj mn pq* 6TM

2 (
m

(
n

Hzj mn pq* 6TM Exj mn pq
6TM D . (68)
The efficiencies are defined as the ratio of these powers to
that carried by the incident wave. In vacuum we obtain

epq
r 5 ~ uA0 pq

10 TEu2 1 uA0 pq
10 TMu2!

P0 pq
1

P0 pq
2 , (69)

and in the lowermost medium we obtain

epq
t 5 ~ uAQ pq

2Q TEu2 1 uAQ pq
1Q TMu2!

PQ pq
2

P0 00
2 . (70)

4. NUMERICAL RESULTS
This section presents the results produced by the present
code in some numerical experiments. We use a standard
personal computer with a 200-MHz Pentium processor
and 32-Mbyte memory. The program is implemented by
using Matlab.

A. Testing the Computer Code and Comparison with
Other Data
To show the advantage, in terms of computational speed,
of the present formulation over my previous one, let us
consider a perfectly conducting sinusoidal grating of the
form

a~x, z ! 5
h
4 S sin

2px
d

1 sin
2pz

d D . (71)

This grating is illuminated under normal incidence with a
wavelength-to-period ratio l/d 5 0.83, and h/d is equal
Table 1. Comparison of the Computational Speed of the Codes Based on
Two Formulations of the C Methoda

M, N

Present Formulation Previous Formulation

e (21, 0)
r e (0, 21)

r e (0, 0)
r e Time (s) e (21, 0)

r e (0, 21)
r e (0, 0)

r e Time (s)

5 0.18318308 0.04441311 0.54480306 4.68 3 1026 31 0.18317513 0.04441197 0.54482602 2.39 3 1027 103
6 0.18318536 0.04441384 0.54480149 1.09 3 1027 81 0.18318483 0.04441374 0.544803 1.42 3 1027 274
7 0.18318539 0.04441385 0.54480151 2.17 3 1029 207 0.18318535 0.04441385 0.5448016 4.56 3 1029 673
8 0.18318538 0.04441385 0.54480152 1.3 3 10211 472 0.18318538 0.04441385 0.54480153 9 3 10211 1225

a The grating is the perfectly conducting sinusoidal crossed grating of Eq. (71) under normal incidence with a wavelength-to-period ratio l/d 5 0.83 and
a height-to-period ratio h/d 5 1.

Table 2. Comparison of the Numerical Results of the Present Study with the Results of Bruno and Reitich
(Ref. 2) for the Perfectly Conducting Sinusoidal Crossed Grating of Eq. (71) under Normal Incidence

with a Wavelength-to-Period Ratio l/d 5 0.83

h/d

Ref. 2 Present Method (M 5 N 5 5)

e (21, 0)
r e (0, 21)

r e (0, 0)
r e e (21, 0)

r e (0, 21)
r e (0, 0)

r e

0.1 0.01881 0.059691 0.842996 26.6 3 10216 0.01881 0.05969 0.842996 2.22 3 10216

0.2 0.063551 0.192968 0.486961 22.5 3 10215 0.063551 0.192968 0.486961 2.72 3 10213

0.3 0.110711 0.308565 0.161448 26.0 3 10213 0.110711 0.308564 0.161448 4.18 3 10211

0.4 0.139786 0.342547 0.035335 29.2 3 10210 0.139786 0.342547 0.035336 1.31 3 1029

0.5 0.134627 0.283651 0.163443 21.6 3 1027 0.134627 0.283651 0.163443 1.57 3 1028

0.6 0.089612 0.168376 0.484016 27.1 3 1026 0.089612 0.16838 0.484016 8.59 3 1028

0.7 0.036325 0.068458 0.790359 27.1 3 1025 0.036319 0.068512 0.790338 1.92 3 1027

0.8 0.035293 0.033719 0.862052 7.8 3 1025 0.033869 0.035333 0.861597 4.59 3 1028

0.9 0.097266 0.04057 0.727476 3.1 3 1023 0.097905 0.039988 0.724214 1.15 3 1027

1 0.180165 0.048574 0.557739 1.5 3 1022 0.183183 0.044413 0.544803 4.68 3 1026
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Table 3. Convergence Study of the Zero eflected Order for the Perfectly Conducting Sinusoidal Crossed
Grating of Eq. (71), with Various Height-to-Period Ratios, under Normal Incidence

with a Wavelength-to-Period Ratio l/d 5 0.83a

Previous Formulation

M 5 N 5 5 M 5 N 5 6 M 5 N 5 7 M 5 N 5 8

h/d e (0, 0)
r e e (0, 0)

r e e (0, 0)
r e e (0, 0)

r e

1 0.544826 22.3 3 1027 0.544803 21.4 3 1027 0.544802 24.5 3 1029 0.544802 9 3 10211

1.1 0.41056 3.35 3 1025 0.410519 4.6 3 1027 0.410516 9 3 10210 0.410516 1.1 3 10212

1.2 0.32145 1.5 3 1024 0.321359 3.5 3 1026 0.321354 6.2 3 1028 0.321354 7.2 3 10210

1.3 0.24448 3.8 3 1024 0.244219 1 3 1025 0.244207 2.3 3 1027 0.244208 3.2 3 1029

1.4 0.15582 6.8 3 1024 0.155217 1.8 3 1025 0.15519 3.4 3 1027 0.155114 6.6 3 10210

1.5 0.77793 1.12 3 1023 0.77119 2.8 3 1025 0.77093 1.7 3 1027 0.077096 2.4 3 1028

1.6 0.05719 2.28 3 1023 0.0575 8.9 3 1025 0.05754 1.6 3 1026 0.05755 1.9 3 1028

1.7 0.09636 5.2 3 1023 0.09851 3.3 3 1024 0.09871 1.2 3 1025 0.098734 3.4 3 1027

1.8 0.16541 1 3 1022 0.169798 9 3 1024 0.170278 4.8 3 1025 0.17033 2 3 1026

1.9 0.248207 2 3 1022 0.255549 2.2 3 1023 0.256564 1.4 3 1024 0.256695 7.2 3 1026

2 0.350388 3.5 3 1022 0.362702 4.5 3 1023 0.364821 3.4 3 1024 0.365035 2 3 1025

Present Formulation

M 5 N 5 5 M 5 N 5 6 M 5 N 5 7 M 5 N 5 8

e (0, 0)
r e e (0, 0)

r e e (0, 0)
r e e (0, 0)

r e

0.544803 4.68 3 1026 0.544801 1.09 3 1027 0.544802 2.17 3 1029 0.544802 1.3 3 10211

0.410517 2.46 3 1025 0.410516 7.05 3 1027 0.410516 1.6 3 1028 0.410516 2.65 3 10210

0.321369 7.7 3 1025 0.321354 2.7 3 1026 0.321354 7.2 3 1028 0.321355 1.5 3 1029

0.244292 1.84 3 1024 0.24421 7.81 3 1026 0.244208 2.44 3 1027 0.244208 6.17 3 1029

0.155435 4.05 3 1024 0.155201 2 3 1025 0.155195 7.34 3 1027 0.155195 2.04 3 1028

0.077402 9.39 3 1024 0.077106 5.26 3 1025 0.077099 2.22 3 1026 0.077099 7.36 3 1028

0.0575 2.19 3 1023 0.057538 1.38 3 1024 0.057553 6.66 3 1026 0.057554 2.43 3 1027

0.097901 4.61 3 1023 0.098667 3.32 3 1024 0.098738 1.8 3 1025 0.098742 7.4 3 1027

0.168347 8.68 3 1023 0.170154 7.17 3 1024 0.170337 4.38 3 1025 0.170344 2 3 1026

0.252754 1.48 3 1022 0.256267 1.4 3 1023 0.256667 9.56 3 1025 0.256695 4.96 3 1026

0.357264 2.3 3 1022 0.364129 2.48 3 1023 0.36501 1.87 3 1024 0.36508 1.1 3 1025

a It should be noted that an error has occurred in Ref. 9. In Table 2 on p. 787, the value of e (0, 0)
r for h/d 5 2 should read 0.36482 instead of 0.036482.
to 1. There are five reflected orders with e (1, 0)
r 5 e (21, 0)

r

and e (0, 1)
r 5 e (0, 21)

r Table 1 lists the reflected efficiencies,
the error in the energy balance, and the computational
speed obtained with both formulations. The variable e,
which denotes the error in the energy balance, is defined
as

e 5 1 2 (
p,qPU0

epq
r 2 (

p,qPUQ

epq
t .

Perfect energy balance does not necessarily indicate com-
putational accuracy. However, concerning the C method,
it has been previously observed,9,14 by comparison with
completely different methods, that the energy balance is a
relevant criterion that gives a good indication of the accu-
racy of the results.

It is seen that the present formulation is some three
times faster than the previous one.

For the same arrangement, we compare in Table 2 the
reflected orders obtained with our new formulation and
that of Bruno and Reitich2 for various height-to-period ra-
tios and truncation orders. It is seen that agreement is
good for shallow gratings, but a growing discrepancy is
observed when the groove depth is increased. To provide
insight into the performance of the method, Table 3 pre-
sents the zero reflected order as a function of different
groove depths for different truncation orders. The calcu-
lation is made with both our formulations. We see that
accurate results are still observed for height-to-period ra-
tios as high as 2 and that the present formulation is more
precise than the previous one. Table 4 corresponds to a
perfectly conducting pyramidal grating with depth-to-
period ratio h/d 5 0.5. It is illuminated under normal in-
cidence with a wavelength-to-period ratio l/d 5 0.4368.
In this case there are 21 reflected orders. Despite the
slow convergence rate indicated by the e parameter, accu-
rate results are already obtained with M as small as 5.
Table 5 shows the reflected and transmitted efficiencies of
a dielectric pyramidal grating obtained with completely
different formulations (Refs. 1, 4, 8, and 18). The param-
eters are dx 5 1.5, dz 5 1, h 5 0.25, l 5 1.533, n 5 1.5,
u 5 30°, f 5 45°, and d 5 90°. Figure 5 is for the gold
grating from Fig. 7.17 of Ref. 11, which also corresponds
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to Fig. 1 of Ref. 2. The refractive index of gold has been
taken to be n 5 0.158 2 i3.3986. We observe a better
agreement with the results of Ref. 11 than with those of
Ref. 2.

B. Comparison with Experimental Data
Figures 6 and 7 show the numerical and experimental
curves for reflectivity versus incident angle for a two-
dimensional sinusoidal grating, the profile of which is de-
scribed by Eq. (71). For this comparison experimental
data were taken from a paper by Han et al.19 Although it
is not quite appropriate to compare theory and measure-
ment for small reflectivity, we see a general agreement
between measurements and predictions.

C. Application to Multilayer Diffraction
As a first example of multilayer crossed-grating diffrac-
tion, we consider a case where anomalies in the diffracted
efficiencies occur. We consider a single layer bounded by
vacuum. The profile consists of a sum of sinusoids. The
parameters are layer thickness e2 5 337.49 nm, v2
5 1.5, dx 5 dz 5 600 nm, l 5 632.8 nm, f 5 0, and h
5 60 nm. The condition on the guided-mode wave num-
ber of the corresponding unmodulated dielectric wave-
guide may be used to predict the range of the incident
angle within which the resonances can be excited. For
the above structure, one finds that the normalized propa-
gation constant is equal to 1.3749 for the TE0 mode and
1.3145 for the TM0 mode. Assuming that coupling is due
to the first evanescent order, the resonant angle should be
equal to 18.67° for TE polarization and 15.06° for TM po-
larization. The reader interested in the details of the cal-
culation of the resonant angle of incidence and in grating
resonances is directed to Refs. 20–22. Figures 8 and 9
represent e00

r efficiency versus u for the TE and the TM
polarization, respectively. It is seen that the resonance
peaks occur at values slightly shifted from the preas-
sumed ones because of the groove depth of the modulated
layer.

To address the stability of the S-matrix approach, we
consider a thick layer over the sinusoidal gold grating
from Fig. 5. We deform the refractive index of the layer
from its initial value to that of the gold substrate. Figure
10 represents the reflectivity of the above structure as a
function of the period of the crossed grating for various
values of the refractive index of the layer. When this re-
flectivity is that of the gold substrate, it can be seen that
curve 3 of Fig. 10 coincides exactly with curve 3 of Fig. 5.
Indeed, in that particular case, the structure is a simple
crossed grating.

Finally, an example is given of diffraction by a grating
with multiple overcoated layers. The coatings consist of
alternating layers of zinc sulfite (ZnS) (n 5 2.37) and
cryolite (Na3AlF6) (n 5 1.35) with a ZnS layer adjacent to
the SiO2 substrate (n 5 1.46). It is assumed that all the
coated layers have the same normalized thickness r j
5 0.32, with

r j 5 ejn j /l.

The grating profile is given by Eq. (71) with h/d 5 0.2
and l/d 5 0.8333. The direction of the incident wave is
chosen by imposing f 5 p/4 and the following relation:
Table 4. Convergence Study of the Efficiencies for a Perfectly Conducting Pyramidal Crossed Grating
with h 5 0.5, dx 5 dz 5 1, u 5 0, f 5 0, d 5 90, and l 5 0.4368

M 5 N 5 5 M 5 N 5 6 M 5 N 5 7 M 5 N 5 8 M 5 N 5 9 M 5 N 5 10

e (21, 22)
r 0.027249 0.02727 0.027377 0.027393 0.027422 0.027428

e (20, 22)
r 0.037875 0.037428 0.037375 0.037287 0.037247 0.03721

e (22, 21)
r 0.028982 0.028708 0.028571 0.028477 0.02842 0.02838

e (21, 22)
r 0.005062 0.005115 0.005104 0.005115 0.005115 0.005118

e (0, 21)
r 0.152897 0.154705 0.15546 0.155939 0.156184 0.156363

e (22 2 0)
r 0.036213 0.035908 0.035951 0.035922 0.035925 0.035916

e (21,, 0)
r 0.139854 0.139041 0.138317 0.138054 0.137882 0.137798

e (0, 0)
r 0.019859 0.020346 0.020814 0.021003 0.021148 0.021229

e 0.001291 0.001121 0.000768 0.000649 0.000549 0.000493

Table 5. Comparison among Different Methods for a Pyramidal Dielectric Grating with dx 5 1.5, dz 5 1,
h 5 0.25, l 5 1.533, n 5 1.5, u 5 30°, f 5 45°, and d 5 90°

Ref. 1 Ref. 8 Ref. 4 Ref. 18

Present Method

M 5 3 M 5 5 M 5 7

e (21, 0)
r 0.00259 0.00254 0.00207 0.00249 0.00246 0.00246 0.00246

e (0, 0)
r 0.01948 0.01984 0.01928 0.01963 0.01962 0.01954 0.01951

e (21, 21)
t 0.00081 0.00092 0.00081 0.00086 0.00085 0.00086 0.00086

e (0, 21)
t 0.00683 0.00704 0.00767 0.00677 0.00678 0.00679 0.00679

e (21, 0)
t 0.00321 0.00303 0.0037 0.00294 0.00292 0.00294 0.00294

e (0, 0)
t 0.9643 0.96219 0.96316 0.96448 0.96493 0.96476 0.96472

e (1, 0)
t 0.00276 0.00299 0.00332 0.00282 0.00282 0.00281 0.0028

e 0.00002 0.0013 20.00001 0.00011 0.00019 0.00006 0.00009
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Fig. 5. Reflectivity versus period for a gold sinusoidal crossed
grating with normally incident light of 0.65-mm wavelength.
Curve 1, h 5 0.040 mm; curve 2, h 5 0.055 mm; curve 3, h
5 0.070 mm. M 5 N 5 2.

Fig. 6. Reflectivity versus incidence angle for a sinusoidal
crossed grating with 3333 lines/mm along the x and z directions.
M 5 N 5 4. l 5 632.8 nm.

Fig. 7. Same as Fig. 6, but for a 3400-line/mm spacing.
sin u 5
1

A2

d
l

.

Hence the incident and the (21, 21) reflected order
waves propagate along opposite directions. Table 6 lists
the reflected efficiencies of a 22-layer coated grating. It
is observed that only the TE polarization specular order
exhibits a high efficiency. This numerical example

Fig. 8. Reflectivity versus incidence angle for a modulated layer
bounded by vacuum. TE polarization case. M 5 N 5 3.

Fig. 9. Same as Fig. 8, but for the TM polarization case.

Fig. 10. Reflectivity versus period for a modulated layer above a
gold substrate with normally incident light of 0.65-mm wave-
length, with e1 5 1 mm and h 5 0.070 mm. Curve 1, n1 5 0.8
2 i4; curve 2, n1 5 1.5 2 i3.3; curve 3, n1 5 0.158 2 i3.3986.
M 5 N 5 2. The points marked by circles correspond to effi-
ciencies calculated without the coating layer.
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shows that the present code is capable of producing con-
vergent results for gratings coated with many layers of to-
tal thickness reaching approximately 6 wavelengths.

5. CONCLUSION
An improved formulation of the Chandezon (C) method
for crossed gratings was presented. It takes advantage
of the polarization degeneracy of the eigenvalues of the
initial problem. Very accurate results were obtained for
large-depth-to-period-ratio gratings with a smooth profile.
In addition, the S-matrix formalism was used to deal with
multilayer crossed gratings. Hence we can investigate
the properties of crossed gratings covered with a great
number of modulated layers of any thickness. The main
weakness of the C method lies in its difficulty to handle
profiles with sharp edges. Thus the domain of validity is
limited in terms of the geometry. However, for one-
dimensional gratings and in particular cases, an oblique
transformation23 has overcome this difficulty. I believe
that such transformations could also be helpful for two-
dimensional gratings.
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